
* 
2J 4 

' 4 -  

OL 
E (PAGES1 (CODE) 

i 2 
i h (3-3 77 1 

(NASA CR ok TUX OR AD NUMBER) I 

ON STABILITY I N  COrJTROL SYSTEMS 

t By Emilio Roxin 

Brown Univffsity and University of Buenos Aires 
I 

GPO PRICE S 

CFSTI PRICE(8) S 

+This repor t  w a s  supported i n  pa r t  by t h e  National Aeronautics and Space 

Administration under Contract No. NGR @-002-013 and i n  par t  by t h e  United 

S ta t e s  Air Force through t h e  A i r  Force Office of Sc ien t i f i c  Research under 

Contract No. AF-AFOSR-693-64. 



9 . . .  
4.. 

ON STABILITY IIi CONTROL SYSTEMS 

Ehilio Roxin 

Brown University and University of Buenos Aires 

1. Introduction 
I 

I An axiomatic foundation of the theory of control  systems w a s  developed 

receiitlji, base6 iipli t h e  iiotioti o f  a t ta in&ie set  (Earbashin i ij, "noxin [6j , 
[ T I ,  [83). 

p e r t i e s  of  the  s o  defined systems (ca l led  sometimes "generalized dynamical 

S ta r t ing  from a set o f  bas ic  axioms, one proves t h a t  t he  gro- 

systems'' or  "generalized control  systems") are i n  accordance with those of , 

commonly known control  systems. The main advantage of t h i s  approach l i e s  i n  

t h e  fact tha t  cmcepts  l i k e  invariance, recurrence, s t a b i l i t y ,  etc., are in- 
. 

troduced i n  i t s  greatest generality, showing t h e i r  i n t r i n s i c  nature. 

"he  re la t ion  of these systems with those defined by contingent equations 
I 

were studied i n  ['I. A way of defining generalized cont ro l  syztems local ly ,  i 

on a closed subset of t h e  phase space, w a s  given i n  [ll]. 

I n  t h e  present paper, def ini t ions of d i f f e ren t  kinds of s t a b i l i t y  f o r  

generalized control  systems are given, similar t o  those known fo r  classical 

dynamical systems (see, fo r  example, Massera 131). Prac t ica l ly  every kind 

of s t a b i l i t y  for dynamical systems, correspond t o  a strong and a w e a k  similar 

property i n  t h e  case of cont ro l  systems. 

munication of the  author [lo]. 

This w a s  already mentioned i n  a com- 

It should be noted t h a t  t h e  re la t ionship  of d i f f e ren t  kinds of s t a b i l i t y  

of control  systems with some "Liapunov functions" w a s  already studied, i n  a 

f e w  cases, by Zubov [13]; here it i s  not t rea ted ,  bu t  it is, obviously, a good 

subject f o r  fur ther  investigations. 
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2. Definit ion of general control systems 

Consider as phase space X a complete, l oca l ly  compact metric space. 

Elements of X will be denoted by s m a l i  l e t t e r s  (x, y, ...), subsets o f  

X by cap i t a l s  (Y, F, A, ...). Let a l so  denote: 

i) p(x, y) t he  dis tance between t h e  points  x, y E X, 

ii) p(A, x) = p(x, A) = i n f  (p(x,  y); 

point x and the  set A). 

y f A} , (distance between t h e  

iii) B(A, B) = sup[p(x, B); x E A ) ,  ("deviation" of t h e  set A from 

the  set B). 

iv )  a ( A ,  B) = a(B, A) = max{p(A, B) ,  

sets A, B i n  t h e  Hausdorff pseudo-metric). 

B(B, A ) ) ,  (distance between t h e  

V) Y ( A ,  B) L i n f  (p(x, B); x E A) = 

i n f  {p(x, y); x E A, y E B) . 
v i )  Se(A) = {x E X; p(x, A) < e )  , (&-neighborhood of t h e  set A).  

The independent variable t (which w i l l  be ca l led  time) may be assumed 

t o  take all r e d  values or  a , ~  non-negative values (t  E R or t E R+ respec- 

t ive ly) ,  Generally, only t E R+ w i l l  be considered, but  i n  most cases t h e  

difference i s  i r re levant .  

A control  system w i l l  be assumed given by i t s  " a t t a i n a b i l i t y  function" 

F(xo, to, t), 

t, from x a t  time to. It is  sometimes a l so  ca l led  " in t eg ra l  funnel". 

which corresponds t o  t h e  set o f  a l l  points  a t ta inable ,  a t  t i m e  

0 

The following axioms are  assumed t o  hold: 

1. F(xo, tc, t )  i s  a closed non-empty subset of X, defined f o r  every 

x E X ,  t s t .  
0 0 
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F(xo, to, to) =[xo) for  every x E X, 

For any to 5 tl h t2: 

to E R. 
0 

It w a s  shown in  [ 8 ]  how the  behadour of the  control system can be 

s a t i s f a c t o r i l y  derived from these axioms. 

i s  only defined on a closed subset of t he  space 

modified as pointed out i n  

I n  the  case when the  control system 

X, the  axioms have t o  be 

1113. 

The following propert ies  proved i n  181, will be needed. 

The a t t a i n a b i l i t y  function 

T < t ( i n  [ 8 ]  t h i s  extension was denoted by 

F(x, t, T) can be extended backwards, Le., 

The properties of t h i s  for G). 

For any x1 r X, to 5 tl, there  ex i s t s  some x E X such 

tha t  

For each xo E: X, to S tl, & > 0 ,  there i s  6 > O  such tha t  I 

It - tll < 6 implies I 

0 

xo E: F(xo, to, tl). 

For each xo E X, t S T, & > 0, there  i s  6 > 0 such t h a t  



backward extension a re  almost t h e  same as f o r  the  forward par t ,  t h e  main 

exception being t h a t  t h e  continuity of F(x, t, T) i n  T (axiom V) nay 

f a i l  and F become unbounded ( f i n i t e  escape t i m e  backwards). 

Definit ion 2.1: A mspping u: I + X, defined i n  some in t e rva l  

I = [to, tl] and such t h a t  

implies 

i s  called a motion of t he  control  system F; t h e  corresponding curve i n  

X- space, a trajectory.  

The continuity of a motion follows from i t s  def in i t ion  and axioms I - VI. 

A motion ul: [ta, \] -+ X i s  a prolongation of t he  motion 

for t E [t,, td3’ 
%:[tc, td] 4 X, 

if [ta, $ 1 3  [t,, tdl and %:(t) = % ( t )  

I n  181 t h e  following properties are proved. 

Theorem 2.1: i f  x1 E F(xo, to, t l) ,  there e x i s t s  a motion u ( t )  of 

t he  control system, such tha t  u(to) = xo, u(t,) = xl- 

Theorem 2.2: i f  the  motions ui(t) ,  (i = 1, 2, 3, ...) of a control  

system are a l l  defined i n  an in te rva l  

l i m  ui(to) = x 

[to, tl] 

ik 

(or [to, + .p)) , and i f  

then some subsequence u ( t )  converges t o  a ce r t a in  
0’ i + a ~  
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motion u (t) and t h e  convergence i s  uniform i n  any f i n i t e  interval .  
0 

Finally,  t h e  notation 

3, Strong s t a b i l i t y  

Definit ion 3.1: The s e t  A C X i s  ca l led  strongly pos i t ive ly  icvar iant  

w i t h  respect t o  a ce r t a in  cont ro l  system, i f  f o r  any 

r e l a t i o n  

xo E: A, to d t, the 

holds. If A consis ts  of a single point, it w i l l  also be cal led a strong 

point  of r e s t .  

Note: If the control  system is  defined only i n  the  closed subset Y C  X, 

then A must be assumed to belong t o  t he  i n t e r i o r  of Y, at  pos i t ive  

- 

distance from i t s  boundary. 

Definit ion 3.2: The strongly pos i t ive ly  invariant  set A C  X i s  ca l led  

strongly s table ,  i f  f o r  every & > O  and t Z 0, there  i s  6 = 6(&, to) > 0 

such t h a t  p(xo, A) < 6 implies 

0 
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f o r  all t Z to. 

This s t a b i l i t y  will a lso  be called strong Liapunov s t ab i l i t y .  Now, as it 

i s  done 

especial ly  Massera [ 5 ]  ), 

type properties,  which f o r  simplicity are  denoted by numbers fJllowed 5y 

( i n  order t o  indicate  t h a t  it i s  a s t a b i l i t y  of the "strong" type) The 

propert ies  are: 

i n  c l a s s i ca l  dynamical systems (see, f o r  example, Yoshizawa [12] and 

it i s  possible t o  define the  following s t ab i l i t y -  - 

"s" 

Is) The strong Liapunov s tab i l i ty  according t o  def in i t ion  3.2. 

2s) The same def in i t ion  3.2, bu t  with 6(&, to) = 6(&) independent of to 

(uniform strong s t ab i l i t y ) .  

3s) For every to Z 0 there  ex is t s  a So(to) > 0 

with u(to) = xo E Sg,(A), 

such t h a t  f o r  any motion 

l i m  
t++- P(u(t) ,  A) = 0 

holds (quasi -asymptotic strong s t ab i l i t y ) .  

4s) Property ( 3 s )  with 6o independent of to 2 0. 

5 s )  For every t Z 0 there  i s  So(to) > 0 such tha t  p(xo, A) < 8o implies 
0 

(i.e., property ( 3 s )  uniformly fo r  d l  motions u( t )  s t a r t i n g  at (xo, to)). 

6s) Property ( 5 s )  with 6o independent of  to 2: 0. 

7s) For every to h 0 there  i s  So(to) > 0 such t h a t  
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( i c e c ,  property (5s) uniformly i n  

strong s t a b i l i t y ) .  

x E S6 (A): quasi-equi-asymp j t i c  
0 

8s) Property (7s) with independent of to 2 0. 

9s) There i s  6o > 0 such t h a t  

uniformly for  a l l  t h 0 (uniform quasi-equi-asymptotic str9n.g s t a b i l i t y ) .  
0 , 

The r e l a t ions  between these  properties are indicated i n  Fig. 1. BGth 

groups of proper t ies  1-2 and 3-9 are independent, as t h e  following example 

showso 

Example 301: L e t  X = R and t h e  control  system be defined i n  Fig. 2( 

where the  motions u ( t )  

f i c i e n t l y  well, the  decrease f o r  

It should be noted t h a t  through 

motions f o r  every to. 

are given graphically ( t h i s  characterizes them suf- 

t++ - may f o r  instance be taken exponentially). 

xo = 0 there  are i n f i n i t e l y  many d i f f e ren t  

Axioms I - V I  a r e  satisfied, as it i s  easy t o  verify. 

The set A = (x: x < 0 )  i s  posi t ively strongly invariant  Ind s a t i s f i e s  

Therefore, both groups of pro- property (gs), but  it does not sat isfy (Is). 

p e r t i e s  i n  Fig. 1 a r e  independent. 

It may be noted t h a t  if the  def ini t ions are not r e s t r i c t e d  t o  to 2 0, 

but  taken f o r  a l l  

property (8s) is. 

to E R, then property (9s) i s  not s a t i s f i e d  any more, bu t  

I n  t h i s  example, t h e  set A is  not closed. Indeed, f o r  a compact A 

we can prove: 
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Theorem X l r  

property (7s) implies (IS) 

For a compact, pos i t ive ly  strongly invariant  set, 

Proofs l e t  A be compact, pos i t ive ly  strongly invariant  and s a t i s f y  

property ( 7 s ) .  Then, f o r  every to Z 0 and e > 0, there  are 6o > 0 and 

t l  Z to such t h a t  

f o r  a l l  t Z tl. 

If A i s  a s ingle  point, it follows from axiom V I  t h a t  there  i s  61> 0 

such t h a t  f o r  a l l  t i n  the  in te rva l  [to, tl], 

Taking 6 = min(S1, S,), t h i s  value s a t i s f i e s  property (1s). 

sa t i s fy ing  (3.1) can S1 If A i s  not a single  point, t h e  existence of 

be proved as follows. Take f o r  every x E A a value 6 > 0 such t ha t  

p(F(S (x), to, t), A) < & uniformly i n  to 6 t 5 tl* A i s  covered by a 

X 

s, 
f i n i t e  collection: A c U S g  ( x i ) ( i  = 1, 2, . . . , p).  Then U S6 i s  a 

i i xi X 

neighborhood of  A and there  i s  some €i1 sa t i s fy ing  S ( A ) C  U S6 (xi), 
i = x  

an6 therefore  

1' fo r  a l l  to S t S t 
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meorem 3.2: Properties (2s) and (3s) together imply ( 5 s ) .  

Proof: l e t  A C X  be posi t ively strongly invariant  and s s t i s f y  

propert ies  (2s) and (3s). Let  t B 0 be given and t jo = t j o ( t o )  be t h e  

same as i n  t h e  def in i t ion  of property (3s). 

6o satisfies (55). 

Assuming, indeed, t he  contrary, there  i s  some 

0 

It w i l l  be proved t h a t  the  same 

E S6 (A) and a 
0 

xn 

sequence t. -++ such t h a t  
1 

( 3.2)  B ( F ( X o '  to, t i ) ,  A) > a > 0 (i = 1, 2, 3, ...). 

As A satisfies (Zs), there  is 6 > 0 such t h a t  p ( x ,  A) < 6 

implies B(F(x, t, T), A) < a f o r  all IC Z t Z t According t o  (3.2) 

the re  i s  a motion u,(t) through (xo, to) such that 

0' 

and, therefore,  

f o r  a l l  I n  t h e  same way there  is, f o r  each 

motion ui(t)  such t h a t  ui(to) r: xo and p(ui(ti), A) > 
t E [to, t,]. 

f o r  a l l  By theorem 2.2 some subsequence of 

t o  a l i m i t  motion uo(t)  f o r  a l l  t 1 to, which therefore  

t E [ to, ti]. 

i = 2 , 3 ,  a 

a, and, therefore,  

u. (t) converges 
1 

s a t i s f i e s  
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fo r  a~ t z t contrary t o  property (3s). 
0' 

The same proof applies t o  the following: 

Theorem 3.3: Properties (2s) and (4s) together imply (65) .  

For compact seis i'ne following stronger r e su l t s  are  valid. 

Theorem 3.4: If A c  X i s  conditionally compact (i.e. the closure 

of A i s  compact), posi t ively strongly invariant and s a t i s f i e s  

properties (2s) and (h), then A a l s o  s a t i s f i e s  ( 7 s ) .  

Proof: l e t  to Z 0, "(to) defined according t o  property (3s) and 

6o > 9 > 0. It w i l l  be proved that  g s a t i s f i e s  the requirement of property 

(7s ) .  

Assuming the contrary, there  are E > 0, xi E S (A) and ti + +  m 
11 

(i = 1, 2, 3, ...) such t h a t  

w x i ,  to, ti), A) > e  > 0 (i = 1, 2, 3,  ...). 

As t he  closure of S (A) may be assumed compact, the  proof coincides 
7 

essent ia l ly  with the  preceding one, taking 

Ui ( t0 )  = xi 

and 
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f o r  a l l  t E [to, ti], 6 being related t o  e by property (2s). By 

compactness, x + x  E Sg (A) may be assumed, so  t h a t  there  i s  some 

l i m i t  motion u,(t), fo r  which 

i 0 
0 

" 

fo r  a l l  t z to, contradicting property (3s). 

I n  the  same way one proves the following. 

Theorem 30.5 : If A C  X i s  conditionally compact, pos i t ive ly  

strongly invariant  and s a t i s f i e s  propert ies  (2s) and (ks), then 

A a l s o  s a t i s f i e s  property (8s). 

The def in i t ions  (Is) t o  ( 9 s )  should, of course, be such tha t  r o  two 

This i s  obvious of them tu rn  mt t o  be iden t i ca l  ( t o  h ~ l y  each other).  

i n  many cases, because it i s  known f o r  c l a s s i c a l  dynamical systems (which 

a r e  a special  case of control  systems, the  strong s t a b i l i t y  being for  them 

t h e  comon s t ab i l i t y ) .  

given her e. 

For l e s s  obvious typ ica l  cases, two examples are  

. Example 3.2: X = R and t h e  control  system i s  an ordinary dynamical 

system whose motions are given i n  Fig. 3 The s e t  { 0) s a t i s f i e s  propert ies  

( 2 s )  and (7s), but  

Example 3.3: 

auxi l ia ry  function 

not (4s) 

2 X = R and polar coordinates P ,  0 are used. With t h e  

h(s)  given i n  Fig. ha, t h e  equation of t h e  motions 
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are given by: 

(sign e for  - n < e < o  and o < e < m ,  

-t p ( t )  = [ e  + h(e ) ]  . const , 

t h i s  constant being defined by the i n i t i a l  conditions: 

P( to) 
const = 

e-to + h(e( to))  

The motions s t a r t i n g  a t  p(0)  = po, e ( 0 )  = 0 l i e  on the  funnel-shaped 

surface of equation 

drawn i n  Figo 4c. 

For every motion, p ( t )  +O, so t h a t  t h e  solution p 3 0 s a t i s f i e s  

property ( 3 s )  . I n  s p i t e  of th i s ,  t h e  a t ta inable  set F[P(O) = bo, e(o> = 0, t l ,  
which i s  the  cross-section of the above mentioned surface, does not tend t o  

77- 
zero because for  8 = 8" = - 2' 

-t P* = Po[ e + 11 + po for  t ++ Q) 

Therefore property (3s)  does not imply ( 5 s ) .  
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2 Example 3.4: Let X = R and the  motions defined by 

x = k COS CX 

y = k e  -t s i n a  

a = arc t g ( t  + c) or a=+ 7r 

Here a is  taken mod and k and c are constants determined by the  

i n i t i a l  conditions. This system s a t i s f i e s  property (5s) but not ( 2 s )  (see 

-Fig. 5) .  

4. Weak s t a b i l i t y  

Definit ion 4.1: The se t  A C  X i s  called weakly posi t ively invariant 

with respect t o  a cer ta in  control  system, i f  for every xo E A, 

there  exists some motion u ( t )  such t h a t  u( to)  = xo and u( t )  E A for  

all t h to. If A consis ts  of a single point, it a lso  w i l l  be cal led a 

weak point  of res t .  

to Z 0, 

Note: 

Y C  A, then t h e  motion u ( t )  should be defined (not empty) for  a l l  

t L t For the s t a b i l i t y  properties defined below, A are  assumed 

t o  belong t o  the  in t e r io r  of Y, a t  a f i n i t e  distance from &. 

If  the control system i s  defined only on the closed subset - 

0 

Theorem 4.1: (Barbashin 111): necessary and suf f ic ien t  for  the weak 

posi t ive invariance of a closet set A, i s  the  condition 

F(xo, to, t)fi A # Q 

for every x E A, t 2 to (4' is the  empty se t ) .  
0 



Definition 4.1: the  weakly posi t ively invariant set A C  X i s  cal led 

weakly stable,  if for every E > 0 and to Z 0, there i s  6 = E(&, to) > 0 

such t h a t  p(xo, A) < 6 implies the existence of some motion u( t )  w l t h  

u(t,) = x and p(u( t ) ,  A) < e fo r  all t Z to. 
0 

T h i s  kind of s t a b i l i t y  w i l l  be called also weak Liapunov s tab i l i ty .  

Now, as i n  the  preceding section, the  following s t a b i l i t y  properties 

- 

are  defined; the  "# indicates  that  they correspond t o  the  weak type. 

l w )  

2w) The same defini t ion 4.1, but w i t h  6(&, to) independent of to 2 0 

The weak Liapunov s t a b i l i t y  according t o  def ini t ion 4.1. 

(uniform w e a k  s h b i l i t y ) .  

5) For every t 1 0  there i s  6 (to) > 0 such t h a t  p(xo, A) < 6o implies 
0 0 

(where r(A, B) = i n f  (C(a, b); a EA, b E B) ) 

4 w )  Property (h) with 6o independent of t I 0. 

5w)  For every to 2 0 there i s  "(to) > 0 such t h a t  i f  P(xo, A) < 60, 

0 

there  i s  some motion u ( t )  with u(to) = xo and 

(quzsi-asymptotic weak s tab i l i ty ) .  

6w) Property (5w) with bo independent of t h 0. 

7w) For every t 1 0 there  i s  60(to) > 0 and f o r  every E ; 0 there  i s  

0 

0 

T = T ( t o ,  E )  

u ( t )  w i t h  u(t,) = xo and lim p(u(t) ,  A) = 0 for  t + +  00, i n  such 

a way t h a t  p(u(t) ,  A) < E for a l l  t Z to + T (quasi-equi-asymptotic 

weak stability) 

such t h a t  P(xo, A) < bo implies t he  existence of a motion 
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8w) Prcperty (7w)  with Eo independent o f  to 5 0. 

gw) Property (8w) with T = T(&) independent of to 2 0 (uniform quasi-equi- 

asymptotic weak s t a b i l i t y ) .  

Note: For a strongly s table  compact s e t  A and any f i n i t e  

i n t e r v a l  [tl, t2], it was  proved i n  [8] t h a t  a value 6 ( E )  can be 

taken such t h a t  t he  s t a b i l i t y  condition of def in i t ion  3*2 i s  s a t i s f i e d  

for all 

systems. The following example shows, however, t h a t  t h i s  i s  not 

- 

to E [tl, t2]. This i s  similar t o  t h e  c l a s s i c a l  d y n h c a l  

t r u e  f o r  t h e  weak s t ab i l i t y .  

2 Example 4.1: L e t  X = R and t h e  motions of the  control  system 

defined by: 

a) I n  the  so l id  pyramidal cone t > 0, I x[ < t - y, 1x1 C 2y - t t h e  

motions are given by 

dY Y - - -  dx x 
d t  t ' d t - t  
- = -  

b) Outside t h a t  cone: - dx = - dy - 0 .  
d t  dt  - 

dy) a t  dx 
d t  c) On t h e  boundary of t ha t  cone, t he  tanget t o  the  motion (- , dt 

any point  i s  required t o  belong to the  convex h u l l  of the  s e t  of tan- 

gents a% i n f i n i t e l y  nearby points, plus t h e  vector k = f 1, i = 0. 

This way, t h e  motions are r ea l ly  defined by a contingent equation ( see  

Roxin [g]) and are shown i n  Fig. 6. 

pyramidal cone, t he  solut ions a r e  not unique. 

or ig in  

On t h e  other hand, there  is  no 60(&, to) va l id  for a l l  0 < to < T1 for 

A t  t h e  points  of the  boundary of the 

It i s  easy t o  ve r i fy  t h a t  t h e  

x = y = 0 i s  weakly posi t ively invariant  and s a t i s f i e s  property (lw). 

T >O, E > O e  
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This example can be eas i ly  modified in  such a way t h a t  it applies t o  

propert ies  (3w) ,  (5w) and (7w) (the only thing t o  do i s  t o  change conveniently 

t h e  motions outside the pyramidal cone). 

def ine t h e  properties: 

Therefore, it makes sense t o  

+ 1%) For every f i n i t e  in te rva l  [tl, t2] E R , there  i s  6o > 0 such 

t h a t  the condition of property ( l w )  i s  sa t i s f i ed  fo r  a l l  

to Ctl, t21* 
3%) Similarly for  property (3w). 

5%) Similarly for  property (5w). 

7%) Similarly fo r  property (7w), f o r  both B(to) and T(e, to). 

The re la t ions  between all these properties are given i n  Fig. 7. 

Example 3.1 (Fig. 2 )  i s  valid a lso  for  the weak s t ab i l i t y ;  x = 0 i s  

a w e a k  point of r e s t  which s a t i s f i e s  property (gw) but nob (lw). This proves 

the  independence of both groups of properties i n  Fig. 7. 

Similarly, example 3.2 shows t h a t  property (7w) does not imply (4w) 

The following example shows t h a t  property o w )  does not imply ow). 

Example 4.2: Let X = R2 and 

x = k COS a(t) 
y = k e -t s i n  a(t). 

Here, k i s  a constant determined by the  i n i t i a l  conditions, and the  

functions Q: (t) are given (mod 27r) i n  Fig. 8a. It i s  t o  be noted t h a t  

a(t) E 0 i s  an admissible function, from which other curves branch off .  
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The motions l i e  on tubes which become more f l a t  as  t + +  =, but t h e  

a t ta inable  s e t  from m y  point of the tube-surface is, fo r  su f f i c i en t ly  la rge  

t, the  whole cross section of the tube-surface; therefore,  i t s  minimal 

dis tance t o  the  or igin tends t o  zero (property (3w)). 

5 .  F i n i t e  s t a b i l i t y  

I n  the  preceding two sections, t h e  prGpertieS number 1 and 2 correspond 

t o  t h e  common (Liapunov) s t ab i l i t y ,  and those numbered 3 t o  9, t o  the  quasi- 

asymptotic s t a b i l i t i e s .  Assuming both t o  hold, one obtains the  very important 

_- 

asymptotic s t a b i l i t i e s .  A s  i n  control systems there  i s  no assumptim zbout 

uniqueness of motion x ( t )  through each point (xo, to) (which r e s t r i c t s  so 

much the  classical d y n d c a l  systems), there  can be defined even stronger 

stabil i t ies than t h e  asymptotic ones, by requir ing t h a t  t h e  motions 

only tend to ,  bu t  actually reach t h e  invariant  s e t  A i n  f i n i t e  time. This 

type of s t a b i l i t y  will be ca l led  f i n i t e  s t a b i l i t y  ; it can be defined f o r  the  

s t rong and for t he  weak s t a b i l i t y ,  and l i k e  t h e  asymptotic one, it ;Nil1 be  

s p l i t  up i n t o  the  quas i - f in i te  plus t he  Liapunov s t ab i l i t y .  

x ( t )  not 

Once the  main idea i s  established, the  development i s  quire s t ra ight -  

forward. Even some examples given above can be s l i g h t l y  changed so tha t  they 

apply t o  t h e  f i n i t e  s t a b i l i t i e s .  

F i n i t e  s t a b i l i t i e s  of t he  strong type (here A i s  a strongly pos i t ive ly  

invariant  set) 

For every t 2 0 there  e x i s t s  a 6 ( t  ) > 0 such t h a t  f c r  every 

motion u ( t )  with u(t,) = xo E Ss (A) ,  there  i s  a f i n i t e  value 

T > 0 such t h a t  u(to + 'cf) E A (and therefore  u ( t )  E A fo r  

all t > to + 'rf). I n  general, -rf depends on t h e  motion u( t ) .  

(This i s  t h e  quasi-finite-strong s t ab i l i t y .  ) 

0 0 0  
10 S )  

0 

f 
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11s) Property (10s) with tjO independent of to 2 0, 

For every t Z 0, there i s  60(to) > 0 such t h a t  xo E Sg (A) 

implies the  existence of T - T (x , t ) > 0 such t h a t  

0 
12s) 

0 

f - f o  0 

aad therefore F(x-, t-, t) A f o r  a l l  t > t_ + T, . 
U I " V  

13s) Property (12s) with tj0 independent of to. 

14 s) For every t B 0 t h e r e  i s  hO(to)  > 0 and a f i n i t e  '&to) > 0 

such t h a t  

0 

F(S (A) , to, to + T ~ )  c A. 

This i s  t h e  quasi-equi-finite strong s t ab i l i t y .  

Property (14s) with 15 s ) 

16s) Property (15s) with T~ independent of to (uniform quasi-equi- 

6o independent of to. 

f i n i t e  strong s t a b i l i t y )  

Obviously t h e  following implications hold: 

10s + 3 s  ; 11s + 4s ; 12s +5s ; 13s + 6 s ;  

14s + 7 s  ; 15s +8s ; 16s +gs e 

Fig. 9 shows t h e  implications between t h e  s t a b i l i t i e s  of t h i s  l a s t  group. 

F i n i t e  s t a b i l i t i e s  of t h e  w e a k  type (here A i s  a weakly pos i t ive ly  

invar ian t  se t ) .  

For every t B 0 there i s  80(t ) > 0 such tha t  i f  xo E S6 ( A ) ,  
0 0 

l o w )  
0 
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there  i s  a motion u ( t )  with u(to) = xo and u(to + T ~ )  E A 

fo r  some f i n i t e  '5 > 0 (and, therefore,  t h i s  .notion can be f 

l l w )  

-1 

prolonged indefini te ly  i n  A). This i s  the  quasi-f ini te  W P F ~  

s t ab i l i t y .  

+ 10%) Property ( l o w ) ,  and for any f i n i t e  i n t e rva l  [tl, t2] E R , "(to) 

can be taken t o  hold uniformly fo r  a l l  

Property ( l o w ) ,  with 6- independent of t B 0. 

For every to 2 0 there  i s  Bo( to)  > 0 and some value 

z 0 < T~ = Tf(to) such t h a t  xo E Sg (A) implies t h e  existence 

of a motion u ( t )  w i t h  u(to) = xo and u(to, T ) E A (quasi-equi- 

f i n i t e  weak s t a b i l i t y )  . 

to E [tly t2]. 

v 0 

0 
f' 

f 

Property ( E w ) ,  and for any f i n i t e  i n t e rva l  [tl, t2] E: R + "(to) 12%) 

can be taken t o  hold uniformly for a l l  

Property ( X w ) ,  with Bo independent of t Z 0. 

to E [tl, t2]. 

1%) 0 

T (6 ) independent of to 2 0 (uniform 
' 5 f =  f 0 

144 Property (I%), and 

quasi- equi- f i n i t e  weak s t ab i l i t y )  

Obviously, the  following implications hold: 

Figure 10 shows the  implications between t h e  s t a b i l i t i e s  of t h i s  

last  group. 

Remarks about the  f i n i t e  s t ab i l i t i e s :  The importance of  motions ar r iv ing  

at t he  or ig in  (supposed t o  be a posi t ively weakly invariant  set) i n  a f i n i t e  

t i m e ,  plays an important r o l e  in control theory. Therefore, the s t a b i l i t i e s  

of t h e  f i n i t e  type were already used, without special  denomination by rumerous 

authors ( for  example,. Kalman [ 21 , Markus and Lee [ 41 , LaSalle [ 33). LaSalle 
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even pointed out t h e  importance of considering s t a b i l i t y  i n  f i n i t e  t i m e  

in te rva ls .  The region of a t t rac t ion  f o r  t h e  f i n i t e  weak s t a b i l i t y  cor- 

responds t o  what i s  known as the  domain of con t ro l l ab i l i t y  ([4]). 

may be noted t h a t  most asymptotically s t ab le  systems of t h e  r e a l  physlcal  

It 

world are, indeed, f i n i t e l y  stable. 

The strong type of f i n i t e  s t a b i l i t y  has not been used, apparently, but  

a r a the r  tr ivial  example shows t h a t  it can appear even i n  the  simple case of: 

j , =  - 2 4 7 .  ( 2 +  u) . sign x 

with t h e  control u ( t )  restricted by I u\ S 1. I n  t h i s  

equation, the  extreme values of u ( t )  correspond t o  t h e  motions 

f o r  u = s: 
GJ 

[JiTJ + 3to - 3t12 f o r  t 4 t + - 
0 3 

0 f o r  t B t o + -  w 
3 ’  

fo r  u = - s: 

( o for  t 2 t  + J m .  0 
0 

The a t ta inable  set i s  indicated i n  Fig. 11. 

Of course, t he  def in i t ions  given above do not solve any spec i f ic  problem, 

but  they may help t o  treat systematically cases which appear frequently i n  

appl icat ions . 
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